Hybrid Surgery for Extraction of Leads Entrapped in the Superior Vena Cava

Superior vena cava (SVC) syndrome is an uncommon but serious complication associated, among other things, with chronic transvenous implanted pacemaker leads. (1) Although there is lack of consensus about how to treat this complication, percutaneous balloon angioplasty of the SVC with stent implant is a commonly accepted approach leaving the leads in situ, or another option is prior lead extraction followed by their reimplantation after the procedure to avoid lead entrapment within the stent. Epicardial lead implantation could reduce the risk of thrombosis associated with transvenous reimplantation. (2)

Hybrid open heart surgery and transvenous lead extraction using sheaths has developed considerably over the past several decades. Although transvenous lead extraction is the standard procedure to remove infected or malfunctioning leads, a surgical approach may be necessary in complex cases that involve concomitant conditions, such as tricuspid valve regurgitation or luminal lead entrapment. (3)

We report the case of a patient with pacemaker leads entrapped in a stent previously implanted in the SVC to treat occlusive syndrome due to SVC thrombosis, who underwent hybrid cardiac surgery with simultaneous transvenous lead removal.

The patient was a 65-year-old man with history of dual chamber pacemaker implanted in 2007 due to complete atrioventricular block. Six months later, a passive fixation lead was percutaneously implanted via the left subclavian vein due to failure of the ventricular active fixation lead, which was left abandoned. In 2014, the pacemaker generator was changed due to battery exhaustion.

In 2017 the patient presented SVC syndrome an underwent angioplasty of the SVC with placement of a 20 x 80 mm self-expanding nitinol Sinus-XL stent (Opti Med®, with its distal part left projecting towards the right atrium. After the implant, the SVC syndrome improved, and symptoms reverted. By the end of 2018, the patient presented ventricular pacing failure due to intracavitary lead fracture. After confirming that the three intracavitary leads in the SVC were entrapped in the stent and could not be removed, an epicardial ventricular lead was inserted through a left thoracotomy and was placed over the left ventricle. One month later, the patient presented pocket site infection with external exposure of the device, negative blood cultures and no evidence of endocarditis.

Because of infection and stent entrapment of three leads in the SVC, the entire stimulation system was removed from the pacemaker-dependent patient. A cavography was performed to analyze stent patency (Figure 1) and the patient underwent a multislice computed tomography (CT) scan to plan the strategy for surgical extraction (Figure 2). A combined procedure for lead extraction was decided: open surgery by median sternotomy, with cardiopulmonary bypass and aortic cross clamping, and a percutaneous approach through the left pocket where the generator was implanted. The right atrium was incised, and the stent was identified inside. The three intracavitary leads were released from the right ventricle and right atrium until reaching the stent in the SVC. Simultaneously, the three leads were percutaneously released from the fibrous tissue in the left subclavian and innominate region until reaching the proximal edge of the stent. Stylet wires, a liberator and 10 Fr polypropylene dilator sheaths (Cook®) were used. Two leads were sectioned above the stent and removed through the atrium, and the third lead was extracted through the pocket. The epicardial catheter was sectioned at the level of the pericardium and removed through the pocket.

Aortic cross-clamp time was 45 minutes and cardiopulmonary bypass time was 82 minutes. Epicardial leads were placed for temporary pacing and the patient was treated with antibiotics. One week after lead extraction, two intracavitary leads were implanted through the stent and the postoperative course was uneventful.

Percutaneous extraction is the technique of choice for removing leads from infected cardiac stimulation devices with low rates of major complications and mortality. (4) A recent systematic review including more than 3,000 patients reported an average success rate of 92.4% for complete percutaneous removal of infected leads. The incidence of major complications and minor complications was 2.9% and 8.4%, respectively. In-hospital mortality was 5.4% and procedure-related mortality ranged from 0.4% to 3.6%. Mean mortality rate was 20% at 6 months and 14% at one-year follow-up. (5)

There is only one case report of successful lead extraction of infected pacing leads trapped by a stent in a patient with surgically corrected transposition of the great arteries. In this case, manual traction was sufficient to remove the leads. (6) Another case of entrapment in the innominate vein corresponded to an ossified thrombus 18 years after pacemaker implantation; on that occasion, the lead was extracted using a laser sheath. (7) As with the patient here

Fig. 1. Detail of the cavography, showing the different pacing leads and a patent stent in the superior vena cava.
presented, compression of pacemaker leads by a stent in the SVC is exceptional and constitutes a challenge for extraction. Hybrid cardiac surgery with simultaneous percutaneous extraction was a safe option to treat this unusual and complex case. In view of these results, the complexity of extracting leads entrapped between a stent and the SVC wall should be considered in case of SVC syndrome requiring stent placement.

Conflicts of interest

None declared.

(See authors’ conflicts of interest forms on the website/Supplementary material).

Ethical considerations

RAB is Director of the Argentine Journal of Cardiology.

Félix Ramírez, Héctor A. Mazzetti, Arnaldo Milani, Raúl A. Borracci
Department of Cardiovascular Surgery, Clínica y Maternidad Suizo Argentina, Av. Pueyrredón 1461, C1015, Buenos Aires, Argentina - E-mail: FélixRi@swissmedical.com.ar

REFERENCES

Complete Left Bundle Branch Block and Blunt Cardiac Injury: A Lesson Learned

Chest injury is the second leading cause of mortality after head injury, and accounts for 20-25% of all accidental deaths. (1) Even though the treatment of patients with polytrauma exceeds cardiological management, patients with closed chest trauma presenting with arrhythmias, elevated cardiac enzymes or pain may require our evaluation. These findings may indicate blunt cardiac injury, a condition in our specialty that causes high mortality. Most cardiac complications secondary to blunt cardiac injury due to closed chest trauma occur within the first 24 hours (65% are already present on admission), (2) and cardiologists should be alert to their clinical presentation and outcome.

We report the case of a 26-year-old male patient with no previous relevant history who was admitted after falling from a motorcycle due to frontal collision with a car. He presented polytrauma with closed-chest and right forearm trauma, encephalocranial trauma and posterior loss of consciousness. On admission, the electrocardiogram (ECG) showed complete atrioventricular block (AVB), QRS complex with complete right bundle branch block (RBBB) morphology and heat rate (HR) of 25 bpm (Fig. 1a). On physical examination, the patient presented an open forearm fracture (Gustilo I) and appeared lucid without signs suggestive of cerebral ischemia and with normal blood pressure. Some minutes later, 3:1 AVB with LBBB conduction developed that was not present on an ECG taken the previous year. After isoproterenol administration, the HR increased to 60 bpm (Fig. 1b). An echocardiogram was urgently performed, with normal results. The laboratory tests showed elevated troponin I level of 2.16 IU/L (normal value <0.02 IU/L). The patient presented complete AVB and complete LBBB during the first 24 hours after admission and was asymptomatic; then, the heart rhythm alternated between sinus rhythm and sinus arrest with persistent complete LBBB. The tests performed to evaluate polytrauma did not show costal fractures, but the computed tomography scan showed signs of pulmonary contusion, right pleural effusion and distal radi-
al and cubital fracture. Another echocardiogram was performed 24 hours after admission which showed left ventricular hypertrophy (IVS 1.3 mm and LVPW 1.1 mm) with abnormal septal motion due to the complete LBBB). Cardiac magnetic resonance imaging was performed to evaluate the presence of edema, hematoma or fibrosis as a cause of rhythm disturbance, with normal results. Four days after the road accident, the patient recovered the sinus rhythm with a heart rate of 55 bpm but as the complete LBBB persisted and he had to undergo surgery due to the forearm fracture, an electrophysiology study was performed on day 14. The study showed normal AV conduction and prolonged HV interval (80 ms) in the context of a complete LBBB. A temporary pacemaker was placed before surgery. Six months later, the patient persists asymptomatic with complete LBBB.

Cardiac injury can be due to penetrating or blunt chest trauma. These types of lesions are completely different in their etiology, clinical presentation, implementation of diagnostic methods, treatment and prognosis. Blunt cardiac injury secondary to closed chest trauma can be caused by the sudden compression of the heart between the sternum and the spine, or by acceleration/deceleration movements, and can affect the free wall, interventricular septum, heart valves, subvalvular apparatus, the conduction system, or the coronary vessels.

There are no updated reports on the incidence of cardiac involvement in chest trauma, probably due to the lack of systematic search, the difficulty in interpreting symptoms and, occasionally, because electric abnormalities may be temporary. (3) An ECG and troponin levels should systematically be obtained on admission because of their 100% negative predictive value. (4)

Commotio cordis describes sudden cardiac death resulting from blunt-force trauma to the chest causing ventricular fibrillation. Excluding commotio cordis, the American Association for the Surgery of Trauma (5) has described six grades of cardiac injury (Table 1), ranging from nonspecific ECG abnormality (grade I) to cardiac perforation (grade V) and even avulsion of the heart involving >50% of cardiac tissue (grade VI). According to this scale, our patient belonged to grade II (heart block). Conduction abnormalities include complete RBBB, LBBB, bifascicular blocks or complete AVB; (6) complete RBBB is more common (7) than complete AVB and LBBB due to its anterior location and its proximity with the sternum. Atrioventricular block is rare and has been reported in only 50 cases according to a systematic review. (8) Complete AVB occurred within 72 hours of injury in 80% of the patients, and 1:1 AV conduction was restored

<table>
<thead>
<tr>
<th>Heart injury scale. American Association for the Surgery of Trauma</th>
<th>Injury description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Blunt cardiac injury with minor ECG abnormality Pericardial wound without cardiac injury, cardiac tamponade, or cardiac herniation</td>
</tr>
<tr>
<td>II</td>
<td>Blunt cardiac injury with heart block or ischemic changes without heart failure</td>
</tr>
<tr>
<td>III</td>
<td>Blunt cardiac injury with sustained multifocal ventricular extrasystoles. Cardiac injury with septal rupture, pulmonary or tricuspid valve incompetence, papillary muscle dysfunction and coronary artery occlusion without heart failure. Blunt cardiac injury with pericardial laceration with cardiac herniation. Blunt cardiac injury with heart failure. Penetrating tangential myocardial wound without affecting the endocardium, endocardium, but with cardiac tamponade.</td>
</tr>
<tr>
<td>IV</td>
<td>Cardiac injury with septal rupture, pulmonary or tricuspid valve incompetence, papillary muscle dysfunction or coronary artery occlusion with signs of heart failure. Cardiac injury with mitral or aortic valve incompetence. Cardiac injury involving the right ventricle or one of the two atria.</td>
</tr>
<tr>
<td>V</td>
<td>Cardiac injury with proximal coronary arterial occlusion. Cardiac injury with left ventricular perforation. Stellate wound with <50% tissue loss of the right ventricle, right atrium, or left atrium.</td>
</tr>
<tr>
<td>VI</td>
<td>Blunt injury with cardiac avulsion or penetrating wound producing > 50% tissue loss of a chamber. Advance one grade for multiple wounds to a single chamber or multiple chamber involvement.</td>
</tr>
</tbody>
</table>
within 7–10 days in about half of survivors probably after edema resolution, as it is one of the probable mechanisms of conduction disturbances. Permanent pacemaker implantation was indicated in about 50% of the patients due to recurrent or permanent complete AVB and mortality rate was 20%. (8) In our case, the patient presented complete AVB with QRS morphology of complete RBBB. Once the sinus rhythm was restored, the conduction abnormality was a complete LBBB because the left branch was the fascicle injured by the blunt cardiac injury, and persists even 6 months after the accident, which turns the case exceptional. Given the lack of specific recommendations on the need for pacemaker, we believe that reporting this type of case will allow the possibility of making recommendations in the future based on the knowledge of the natural history of patients with cardiac injury after a closed chest injury.

Conflicts of interest
None declared.

(See authors’ conflicts of interest forms on the website/Supplementary material).

Ethical considerations
Not applicable

Luisa Hsu, Yanina Castillo Costa, Victor Mauro, Flavio Delfino, Benjamin Elencwajg, Carlos Barrero
Clínica Santa Isabel
E-mail: hos.luisahsu@gmail.com

REFERENCES

Chronic Dissection of the Abdominal Aorta. Endovascular Therapy with Novel Stent-Graft in-situ Fenestration

Although thoracic endovascular aortic repair has become a promising treatment for complicated acute type B dissection, its role in treating chronic post-dissection thoraco-abdominal aortic aneurysm is still limited owing to persistent retrograde flow into the false lumen (FL) through abdominal and/or iliac re-entry tears. (1) Aortic dilation is the main factor to determine long-term survival in these patients.

The aim of this study is to demonstrate the feasibility of endovascular treatment using in situ stent-graft fenestration for the left renal artery, sealing the re-entry tear and completely redirecting the blood flow into the true lumen (TL).

This approach was used in a 62-year-old male patient with dilation of the abdominal aorta discovered in an abdominal ultrasound during the preoperative assessment before an elective cholecystectomy. Patient’s risk factors were hypertension and chronic smoking.

Physical examination revealed a pulsating aortic beat, and femoral and popliteal arterial pulses were normal. The computed tomography angiography showed a large ulcer in the descending thoracic aorta associated with an intramural hematoma, with a transverse aortic diameter of 79 mm (Fig. 1A). A chronic dissection with a patent FL and an aneurysmal dilation of the abdominal aorta were also observed with a transverse diameter of 59 mm (Fig. 1B). It was also possible to visualize the origin of the celiac trunk (CT), the superior mesenteric artery (SMA) and the right renal artery emerging from the TL and the left renal artery from the FL, with a re-entry tear in this sector. A compression of the TL was observed in the infrarenal abdominal aorta and there was a distal re-entry tear in the left external iliac artery (Fig. 1C).

A two-stage endovascular repair was decided due to the complexity of the case. Firstly, the giant ulcer in the descending aorta was treated by implanting two self-expandable Hercules™ stent grafts. Three months later, endovascular repair of the abdominal aorta was performed in the catheterization laboratory under general anesthesia and with invasive blood pressure monitoring. A spinal drainage catheter was inserted to monitor cerebrospinal fluid (CSF) pressure and both femoral arteries and the right subclavian artery were incised. Two 70-cm length multipurpose type introducers (8 Fr and a 7 F Flexor®) were introduced through the subclavian arteriotomy for selective cauterization of the SMA and the right renal artery, respectively. An PTFE-coated SIGBI G SETA® stent-graft was positioned at 3 cm of each vessel (one measuring 8 x 38 mm in the SMA and another 7 x 38 mm in the right renal artery; chimney technique) to allow blood flow in these vessels. Then, a 25 x 80 mm RAKB SETA® balloon-expandable full stented graft was introduced in the abdominal aorta via the right femoral artery, and a 25 x 50 mm SETA
MUG® in-situ fenestration expandable stent-graft was placed in both renal arteries and intentionally covering the origin of the left renal artery. Once this stent graft was expanded, the other stents placed in the SMA and right renal artery were expanded.

After the in-situ fenestration stent-graft was deployed, an 8 Fr OSCOR® guidewire was introduced through the right femoral artery and was positioned in the ostium of the left renal artery (Fig. 2A). A 0.035-inch straight Terumo® hydrophilic guidewire was advanced through the membrane of the SETA MUG into the left renal artery and was then exchanged for a 0.014-inch support guidewire to advance a 3.5 mm coronary angioplasty balloon catheter (Fig. 2B) and then a 5-mm balloon catheter to create a fenestration in the membrane. Two 6 x 22 mm SIGBI G SETA® PTFE-coated stents were introduced through this orifice, to redirect the blood through the TL into the left renal artery, closing the re-entry tear (Fig. 2C).

The final part of the procedure consisted in implanting two straight balloon expandable RIK SETA® branches for both common iliac arteries using the kissing stent technique, and a supplementary balloon expandable RIK F SETA® extension for the left external iliac artery, with a fenestration for the origin of the internal iliac artery, thus sealing the distal re-entry tear.

Mean blood pressure was strictly maintained at ≥ 80 mm Hg to avoid spinal hypoperfusion. Cerebrospinal fluid pressure did not vary during the procedure and the spinal drainage was removed 24 h later.

The procedure lasted 330 minutes, 420 cm3 of non-ionic contrast agent were used and mean fluoroscopy time was 93 minutes. The patient remained hospitalized for 4 days.

A computed tomography angiography was performed 30 days later. Both renal arteries and the SMA were patent without endoleaks and the FL was completely occluded, so all the blood flowed through the TL (Fig. 3).

About 20-40% of the patients with acute type B thoracoabdominal aortic dissection evolve with aneurysmal dilation of the FL during follow-up. (2) Conventional surgery and the novel hybrid surgery represent valid therapeutic options. Both techniques have high morbidity and mortality, even in experienced centers. (3)

Complete endovascular treatment of chronic aortic abdominal dissections with fenestrated or branched stent grafts has been, until now, limited. This is mostly due to the narrow working space in the TL (partially collapsed by the FL) and to the impossibility of sealing reentry tears of the FL because of the lower anatomical position between the CT and the renal artery. (4)

There are reports on the use of endovascular occluders to seal the reentry tear of the FL with poor outcomes, especially related with the persistence of endoleaks and lack of remodeling of the aortic lumen. (5)

In our case, the use of a SETA MUG® stent graft

Fig. 1. A and B. Axial sections of computed tomography angiography. (A) Large periaortic intramural hematoma in the sigmoid aorta. (B) Left renal artery emerging from the false lumen (FL) associated with aneurysmal dilation of the aorta. C. Three-dimensional reconstruction showing an ulcer in the descending aorta (blue arrow), reentry tear of FL in the left renal artery (green arrow) and reentry tear of the FL in the left external iliac artery (red arrow).

Fig. 2. A. Angiographic control through the guidewire showing patent MUG graft and false lumen (FL). B. Balloon angioplasty for in situ fenestration. C. Angiographic control showing blood flow through the true lumen with complete sealing of the FL.
with in situ fenestration gave us the possibility of sealing the FL reentry tear at the level of the left renal artery ensuring blood flow into the kidney during the entire procedure. The high porosity of the device allows the placement of covered stents through its meshes. We did not find any publication in the international literature about the use of a stent with these characteristics.

We decided to use coated stents for the SMA and the right renal artery (chimney technique) to ensure blood flow to both arteries and because the risk of endoleak during follow-up is lower due to the small diameter of the TL. In a recent study, Oikonomou et al. reported that the use of covered stents in the visceral branches for the treatment of post-dissection thoracoabdominal aortic aneurysm is feasible. (6)

The distal reentry tear in the left external iliac artery was sealed with a straight balloon expandable stent graft with a fenestration towards the internal iliac artery, which allowed blood flow into the vessel. There was no change in creatinine levels immediately after the intervention and in the last control before the computed tomography scan.

While the rate of cardiovascular and renal complications is relatively low, the risk of spinal cord ischemia during endovascular repair of thoracoabdominal aneurysms remains significantly high, hence the importance of performing these procedures in two stages.

We treated the thoracic aorta three months before repairing the abdominal aorta to reduce the risk of paraplegia. Nevertheless, during the repair of the abdominal aorta, we placed a spinal drainage catheter, maintained a stable mean blood pressure not <80 mm Hg, and the left subclavian artery and both internal iliac arteries remained patent.

The promising immediate outcome in this patient demonstrates that the use of this new stent graft in situ fenestration is feasible and could introduce a new concept in the endovascular approach of these patients with post-dissection thoracoabdominal aneurysms. However, further studies with larger number of patients and longer follow-up will be essential to evaluate the mid and long-term effectiveness of this technique, as well as the need for eventual secondary procedures.

Conflicts of interest
None declared.

(See authors’ conflicts of interest forms on the website/Supplementary material).

Ethical considerations
Not applicable

Hernán G. Bertoni1, Germán A. Girela2, Héctor D. Barone3, Federico De Caso2, Alejandro De La Vega2, Eduardo E. Magariños1
E-mail: hernangbertoni11@gmail.com
1 Department of Interventional Cardiology and Endovascular Therapy. Instituto Finli. CABA
3 LATECBA SA. CABA

REFERENCES
Severe Pericardial Calcification: Does it Still Exist?

Constrictive pericarditis is the final phase of a pericardial inflammatory process with progression to chronic involvement producing pericardial constriction and severe diastolic dysfunction. Only 1.8% of inflammatory pericarditis progress to constriction: postoperative pericarditis ranks first, followed by radiation-induced pericarditis and those caused by autoimmune diseases and infections.

Severe circumferential fibrosis and calcification are markers of adverse outcome and make the etiologic diagnosis difficult.

We describe the clinical and pathological findings of a case of pericardial constriction and cardiac osseous metaplasia in an immunocompetent patient.

A 58-year-old male patient with a history of hypertension and non-insulin-requiring diabetes mellitus visited the outpatient clinic due to edema of the lower extremities and class III dyspnea during the previous month. He was born in the province of Chaco in northeastern Argentina where he lived with his family in a poor home in overcrowded conditions.

On physical examination, his general status was poor, with cachexia and evident signs of advanced heart failure.

The electrocardiogram showed complete right bundle branch block with no other abnormalities. The laboratory tests revealed anemia, elevated liver enzymes and hypoalbuminemia. Serology tests for viral hepatitis B and C and HIV were negative, with positive tests for Chagas disease and a PPD test <5 mm.

The chest X-ray showed severe circumferential pericardial calcification (Figure 1A). The patient underwent Doppler echocardiography which confirmed the presence of pericardial calcification and signs of constriction. The chest computed tomography scan also confirmed circumferential calcification of the pericardium with an “egg-shell” pattern (Figure 1B), and the presence of normal size calcified mediastinal, parahilar, axillary and mesenteric lymph nodes.

A diagnosis of constrictive pericarditis was made, and after discussing the case in an interdisciplinary meeting, pericardiectomy was decided after improving the patient’s general status, in terms of nutrition and heart failure.

Ten days after hospitalization the patient presented signs of multiple organ failure secondary to sepsis caused by a probable respiratory infection, and he finally died.

The autopsy report was chronic constrictive pericarditis, active and purulent, with pericardial areas of dystrophic calcification and osseous metaplasia (Figure 2).

Chronic constrictive pericarditis is rare and represents 1.8% of inflammatory pericarditis. (1) In Argentina, tuberculosis (TB) is the most common cause of pericardial constriction, but is a rare form of extrapulmonary TB, with a mortality rate of 60% when not treated. (2)

Pericardial involvement usually occurs from lymphatic spread of Mycobacterium tuberculosis, while hematogenous or contiguous spread from a primary pulmonary focus is uncommon.

The presence of fibrosis, pericardial calcification and osseous metaplasia reflect chronic and irreversible constriction. (3) The absence of active inflammation parameters (normal erythrocyte sedimentation rate and C-reactive protein and absence of leukocytosis) predict the lack of response to medical treatment. Although these patients are candidates for surgical treatment (4), the main obstacle is the inability to remove calcium from the parietal pericardium, resulting in extremely high mortality (40%) (5) associated with several factors: the poor general condition of these patients at the time of surgery; advanced age, advanced functional class (III-IV), presence of moderate to severe pericardial effusion and ascites, many of which were present in this patient.

Tuberculosis was the most likely etiology in our patient due to his living conditions and epidemiological environment. In our setting, TB is still a common cause of constrictive pericarditis and pericardial calcification.

Fig. 1. A) Chest-X ray. B) Chest computed tomography scan with diffuse pericardial calcification (white arrows)

Fig. 2. A) Gross examination of the explanted heart with severe pericardial calcification. B) Optical microscopy image showing inflammatory infiltrate without granuloma and osseous metaplasia.
Medical treatment offers an alternative in early stages, but surgery is the only option for remission of the signs and symptoms of constriction. However, in cases such as the one presented by this patient, mortality is high due to the associated comorbidities and the advanced stage of the disease. Thus, these patients are still a therapeutic challenge nowadays.

Conflicts of interest
None declared.

Ethical considerations
Not applicable

Carolina Reynoso, Mariela Tolusso, Mariano Napoli, Andrea Zappi, Lucía R. Kazelian, Juan Gagliardi
Hospital General de Agudos “Dr. Cosme Argerich”.
Department of Cardiology.
Email: carolina.gr91@live.com

REFERENCES

http://dx.doi.org/10.7775/rac.v88i4.18616