Relationship between myocardial viability, myocardial blood flow and coronary anatomy by positron emission tomography integrated with multislice computed tomography

EMA N. ARAMAYO GERÓNIMO, AMÍLCAR R. OSORIO, RICARDO J. Geronazzo MTSAC, MAURO NAMÍAS, ROXANA CAMPISI MTSAC

ABSTRACT

Background
The relationship between myocardial viability, myocardial blood flow and the degree of epicardial coronary stenosis in patients with coronary artery disease and left ventricular dysfunction is unclear.

Objective
The purpose of this study is to determine whether positron emission tomography (PET) viability patterns and myocardial flow at rest correlate with the degree of epicardial coronary stenosis.

Methods
Myocardial viability was evaluated in 27 patients by the combined analysis of 13N-Ammonia (13NH3) perfusion and 18F-2-fluoro-2-deoxyglucose (FDG) metabolism to identify four PET patterns: match (concordant reduced uptake of both radiotracers), mismatch (hypoperfusion with preserved FDG uptake), reverse mismatch (preserved perfusion and reduced FDG uptake) and preserved uptake of both radiotracers. Myocardial blood flow was calculated using a two-compartment model. Coronary artery stenosis was classified as mild (< 50%), moderate (>50%), severe (>70%) and critical (≥90%).

Results
In the 459 analyzed segments, 33% were match, 12% mismatch, 11% reverse-mismatch and 44% preserved patterns. Mismatch, reverse-mismatch and preserved patterns exhibited higher flows than the match pattern (p<0.01). Fifteen coronary lesions were mild, 7 moderate, 20 severe and 39 critical. There was no correlation between the degree of coronary stenosis and viability patterns (R<0.2, p=NS) or blood flow values (R=0.12). Analysis by vascular territory did not correlate with the degree of coronary stenosis (p=NS).

Conclusions
Lack of correlation between PET viability patterns, degree of epicardial stenosis and myocardial blood flow suggest that coronary anatomy can neither differentiate viable from necrotic myocardium nor predict the functional status of myocardial flow in patients with left ventricular dysfunction.

Abbreviations

PET:	Positron emission tomography
PET/CT:	Positron emission tomography integrated with multidetector computed tomography
ROI:	Regions of interest
RV:	Right ventricle

13NH3: 13N-Ammonia
CA: Coronary angiography
CT: Multidetector computed tomography
FDG: 18F-fluoro-2-deoxyglucose
LV: Left ventricle

BACKGROUND
Evaluation of glucose metabolism with 18F-2-fluoro-2-deoxyglucose (FDG) by positron emission tomography (PET) is the most sensitive non-invasive technique for assessing myocardial viability. (1) FDG behaves as a glucose analogue, entering myocardial cells in direct proportion to coronary flow through glucose-specific protein channels (carriers) (GLUT-1 and GLUT-4). Then, FDG is uptaken by the carbohydrate metabolic pathway and phosphorylated by hexokinase to form FDG-6-phosphate. This process is proportional to the rate of myocardial glucose utilization at the time of injection, which depends on the metabolic state of the tissue. Once phosphorylated, FDG-6-phosphate remains in the cardiac myocyte without further metabolic processing. Hence, FDG is a molecular marker of performance and of the balance between glucose transporters (membrane integrity) and hexokinase.

In the viable myocardium, the subsequent metabolism of the FDG-6-phosphate molecule is very slow, allowing sufficient intracellular retention for image interpretation. Conversely, in the presence of myocardial necrosis, FDG uptake is greatly decreased or even absent. (2) To assess myocardial viability, most studies compare myocardial perfusion with flow radiotracers as nitrogen-13-ammonia (13NH3) or myocardial FDG uptake with rubidium-82 (82Rb). (3) The combination of these two radiotracers can be used to determine the relationship between flow and metabolism, identifying with greater specificity both viable myocardium (including stunning and hibernation) and necrotic myocardium in patients with left ventricular dysfunction caused by coronary disease. (4) Assessment of perfusion with 13NH3 also allows quantification of absolute myocardial blood flow (ml/min/g) in a single study, without further radiation exposure to the patient. (5) In the search for the best therapeutic decision, integrated assessment of these patients usually associates myocardial viability studies with information of coronary anatomy by coronary angiography (CA).

The aim of this study is to investigate the relationship between PET patterns of myocardial viability, myocardial blood flow and the degree of epicardial coronary stenosis in patients with ventricular dysfunction caused by coronary artery disease.

METHODS
Study population
The study included 50 patients with dilated cardiomyopathy of coronary etiology and severe left ventricular (LV) dysfunction, referred for myocardial viability evaluation with combined PET-multidetector computed tomography (PET/CT). Twenty seven patients with CA within six months of PET study were retrospectively selected. All patients signed the informed consent form for the clinical study.

PET protocol
Patients were positioned in a hybrid Discovery STE/CT system for the myocardial perfusion study. Heart rate, arterial blood pressure and electrocardiogram were continuously monitored. First, a thoracic scan (CT scout) was performed, including the cardiac region for CT and PET acquisition. This was followed by a low-dose CT scan (CTDI < 2 mGY) synchronized with the gating signal for subsequent attenuation correction. Then, 0.17 mCi/kg (average 15mCi or 555 MBq) of 13NH3 were injected with a perfusion pump. Acquisition in list mode was synchronized with the radiotracer injection. Dynamic acquisition in 2D mode (12 frames x 10s, 3 x 20s, 4 x 30s and 2 frames x 300s) was initiated simultaneously with the radiotracer injection. After the first three minutes, a static and a gated series were obtained, followed by a 5-minute gated sequence in 3D mode.

To assess metabolism, the patients came on the second day in fasting conditions. After confirming basal blood glucose level < 160 mg/dl, an oral load of glucose (50 gr) was administered. Subsequent serial blood glucose measurements were performed, and according to a pre-established protocol, intravenous insulin was administered to optimize myocardial glucose uptake. After verifying myocardial substrate change from fatty acids to glucose (when blood glucose level was < 150 mg/dl), 0.11 mCi/kg (average 10 mCi or 370 MBq) FDG was injected. Sixty minutes after the injection, 3D mode static and gated image acquisition was initiated. (600 s acquisition in 8 bins), and completed with a low dose CT scan (CTDI < 2mGY) for attenuation correction.

All patients were studied without modification of their usual pharmacological treatment.

Analysis of PET images
Studies were processed in a GE-Xeleris® workstation. First, short-axis transaxial images were reoriented in slices perpendicular to the long base-apex axis, a vertical long axis in vertical slices from the septum to the lateral wall and a horizontal long axis in horizontal slices from the inferior to the anterior wall. Correct alignment was performed between PET emission images and CT transmission images for attenuation correction.

The LV was divided into 17 segments (6) to analyze perfusion and metabolic images (Figure 1A).

To perform the semiquantitative analysis, FDG uptake was normalized to the highest 13NH3 uptake in the regions with normal myocardial flow. Visual analysis consensus from two trained observers assigned a 0-4 score to each segment according to the degree of radiotracer uptake, both for perfusion as metabolic images. A 0 score corresponded to the preserved tracer uptake, 1 mild, 2 moderate, 3 severe decrease of tracer uptake and 4 absence of tracer uptake. Segments were classified according to the combined assessment of perfusion and metabolism into 4 PET viability patterns, following nuclear cardiology procedure guidelines (4) (Figure 1B):

1. **Match**: concordant reduced uptake of both radiotracers, indicative of necrotic myocardium
2. **Mismatch**: reduced 13NH3 uptake discordant with preserved FDG uptake, denoting myocardial hibernation
3. **Preserved**: preserved uptake of both radiotracers in the presence of contractile dysfunction
4. **Reverse mismatch**: preserved 13NH3 uptake, discordant with reduced FDG uptake, indicative of viable myocardium (this pattern is observed in myocardial stunning, left bundle branch block, diabetes mellitus and/or multivessel disease).

Myocardial flow at rest was calculated from dynamic 13NH3 images, using Carimas 2.0 software. (8) Transaxial images were reoriented into the three conventional axes, and regions of interest (ROI) were automatically defined in the myocardium, the left ventricular vascular pool and in the right ventricle (RV). Regions of interest determined au-
Myocardial blood flow at rest according to the different patterns
From a total of 459 segments, 11 segments were discarded due to partial volume effect affecting adequate myocardial flow quantification. Average flow for the match pattern was 0.39 ml/min/g, significantly lower than the mismatch pattern flow of 0.50 ml/min/g. Reverse mismatch presented an average flow of 0.61 ml/min/g and the preserved pattern flow was 0.69 ml/min/g (p < 0.01) (see Table 2).

Relationship between the degree of coronary stenosis and myocardial blood flow at rest

Coronary angiography reports were evaluated and lesions were classified according to the percentage of coronary obstruction as: mild (< 50%), moderate (50 to 70%), severe (> 70%) and critical (> 90%).

Statistical analysis
Continuous variables were expressed as mean, standard deviation and median. Match results were compared with the group formed by the rest of the patterns using Student’s t test. A p value < 0.05 was considered statistically significant. Pearson’s correlation coefficient was used to evaluate the correlation coefficient between PET patterns and the degree of epicardial coronary stenosis. This correlation analysis was chosen over Spearman’s test because the hypothesis testing is more accurate for large samples.

RESULTS
Population characteristics are described in Table 1. In the 459 segments of 27 study patients, 33% presented match pattern, 12% mismatch, 11% reverse mismatch and 44% preserved perfusion and metabolism (Table 2).

According to CA results, 15 stenoses were mild, 7 moderate, 20 severe and 39 critical.

Table 1. Clinical characteristics of the population

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>59 ± 11</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>27 ± 5</td>
</tr>
<tr>
<td>Left ventricular ejection fraction, %</td>
<td>29 ± 11</td>
</tr>
<tr>
<td>Male gender</td>
<td>22</td>
</tr>
<tr>
<td>Coronary risk factors</td>
<td></td>
</tr>
<tr>
<td>Hypertension, n</td>
<td>19</td>
</tr>
<tr>
<td>Dyslipidemia, n</td>
<td>21</td>
</tr>
<tr>
<td>Smoking, n</td>
<td>6</td>
</tr>
<tr>
<td>Ex smoker, n</td>
<td>7</td>
</tr>
<tr>
<td>Diabetes mellitus, n</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>3</td>
</tr>
<tr>
<td>Left bundle branch block, n</td>
<td>5</td>
</tr>
<tr>
<td>Pacemaker, n</td>
<td>2</td>
</tr>
<tr>
<td>Symptoms, n</td>
<td>12</td>
</tr>
<tr>
<td>Dyspnea, n</td>
<td>6</td>
</tr>
<tr>
<td>Angina, n</td>
<td>6</td>
</tr>
<tr>
<td>Coronary angioplasty, n</td>
<td>3</td>
</tr>
<tr>
<td>Anterior Q wave myocardial infarction, n</td>
<td>20</td>
</tr>
<tr>
<td>Inferior Q wave myocardial infarction, n</td>
<td>3</td>
</tr>
<tr>
<td>Non-Q wave myocardial infarction, n</td>
<td>2</td>
</tr>
<tr>
<td>Revascularization surgery, n</td>
<td>1</td>
</tr>
</tbody>
</table>

BMI: Body mass index
Absolute values of myocardial blood flow at rest for each segment were variable and scattered for each degree of coronary stenosis. There was no correlation between epicardial coronary stenosis and blood flow at rest for each segment (R=0.12). The analysis by vascular territory showed no correlation of myocardial blood flow at rest with the degree of epicardial coronary stenosis (p = NS). Only the analysis of the viable patterns presented a slight, though not significant, decrease in the median of absolute flow at rest with greater degree of coronary stenosis.

DISCUSSION
The main result of this study is that the incidence of PET/CT myocardial viability patterns and myocardial blood flow at rest values were independent of the location and degree of epicardial coronary stenosis in patients with left ventricular dysfunction caused by coronary artery disease.

Combined analysis of PET myocardial perfusion and metabolism can discern both viable and necrotic myocardium with greater specificity than isolated evaluation of metabolism. (3) In patients with severe reduction of left ventricular contractility, the positive predictive value for improved contractile function with revascularization is 76% and the negative predictive value is 82%. (12)

Published data indicate that the visual analysis of reduced regional tracer uptake and software semi-quantitative analysis have similar diagnostic accuracy for detecting viable myocardium. (13) In this study, the segments were analyzed using a visual score according to the guidelines of the American Society of Nuclear Cardiology. The segments were categorized into four PET patterns that differentiated myocardial necrosis from myocardial viability. All metabolic studies were performed standardizing the patient’s diet after an oral glucose load to favor the change of myocardial metabolism from fatty acids to glucose. In addition, all images had attenuation correction and were normalized to the myocardial segment which exhibited the best perfusion. (4) Therefore, the categorization of the four segments in PET patterns cannot be attributed to patient diet variations or technical problems.

Table 2. Incidence of PET viability patterns and myocardial blood flow at rest

<table>
<thead>
<tr>
<th>Pattern</th>
<th>No of segments (n = 448)</th>
<th>Coronary blood flow at rest (ml/min/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Match</td>
<td>153 (33%)</td>
<td>0.39 ± 0.2*</td>
</tr>
<tr>
<td>Mismatch</td>
<td>55 (12%)</td>
<td>0.50 ± 0.3</td>
</tr>
<tr>
<td>Reverse mismatch</td>
<td>49 (11%)</td>
<td>0.61 ± 0.2</td>
</tr>
<tr>
<td>Preserved</td>
<td>202 (44%)</td>
<td>0.69 ± 0.2</td>
</tr>
</tbody>
</table>

Notice that blood flow at rest in the match pattern was significantly lower than that of viable segments, *p<0.05. PET: Positron emission tomography

Table 2. Relationship between myocardial flow at rest and epicardial coronary stenosis. A. Values of myocardial flow at rest were different for each degree of coronary stenosis. B. The viable segments presented a slight, though not significant, decrease in the median value of absolute blood flow at rest with greater degree of stenosis (slope=0.04, R=0.96), consistent with lack of correlation between stenosis severity and viability patterns (q1: quartile 1; q3: quartile 3).

Fig. 2. Relationship between PET patterns and the degree of epicardial coronary stenosis. The extent of PET patterns was highly variable for each degree of lesion. There was no correlation between the incidence of each pattern and the degree of epicardial coronary stenosis. Note, for example, that the match pattern can be seen at any degree of stenosis, as well as for the rest of the PET patterns.
significantly higher in viable than in necrotic territories. Beanlands et al. (16) demonstrated that coronary flow at rest in necrotic segments is ≤ 0.45 ml/min/g whereas in viable segments it is > 0.45 ml/min/g. In the present study, mean blood flow in the necrotic myocardium was 0.39 ml/min/g, in accordance with results reported in the literature. (11) Our group had previously reported that using a cutoff value of 0.47 ml/min/g, the sensitivity and specificity to qualify tissue viability is 83%. (17)

The complexity to perform and analyze dynamic studies with 13NH$_3$, added to its short half-life (10 minutes), limits its use to centers possessing on-site cyclotron adjacent to the PET. This hinders the performance of large scale studies, necessary to evaluate whether the images acquired with the single administration of 13NH$_3$ have prognostic value in patients with left ventricular dysfunction. It is noteworthy that currently, the prognostic value of viability studies with PET is given by the presence or absence of mismatch and match patterns.

Structural indexes, as the percent obstruction of an epicardial coronary artery, often differ from functional parameters. This discrepancy between anatomy and microvascular function is multifactorial and may depend on the length of the stenosis, on its eccentricity, on collateral circulation or on the presence of endothelial dysfunction, among others. (5) In this group of patients, there was no correlation between coronary flow at rest and degree of epicardial coronary stenosis. When only the flows of viable segments were analyzed, there was a slight, but not significant, decrease in the median of absolute flow with greater degree of stenosis. These results suggest that a specific epicardial coronary stenosis cannot predict the degree of microcirculatory involvement at rest.

When we analyzed the relationship of the four PET myocardial viability patterns and the percentage of coronary stenosis we did not find a significant correlation. It is of interest that this lack of correlation was independent of the analyzed coronary vessel.

Limitations
A limitation of our study was the lack of evaluation of collateral circulation and its potential correlation with viability patterns. This was analyzed by Di Carli et al., (18) who described that the visualization of collateral circulation in myocardial regions supplied by occluded arteries does not always imply presence of viable myocardium. In fact, collateral visualization was a non-specific mismatch pattern marker. Moreover, lack of collateral circulation did not necessarily mean low probability of viable myocardium.

Another limitation of our study is that the findings emerge from our database analysis. Nevertheless, they have clinical relevance.

CONCLUSIONS
Sometimes the coronary angiography information alone can define the indication of revascularization in patients with coronary artery disease and left ventricular dysfunction. Yet, as described, the degree and location of epicardial coronary stenosis does not predict the presence or absence of myocardial viability. Therefore, in selected patients, we believe that the integration of clinical, anatomical, functional and metabolic information is necessary in decision-making. Further studies are needed to determine the impact of integrated information after revascularization, taking into account that its success depends not only on functional recovery, but also on improving survival, increasing exercise capacity, reverting left ventricular remodeling and preventing sudden death.
Conflicts of interest
None declared.

Acknowledgements
To radiologists of the Fundación Centro Diagnóstico Nuclear: Dr. Gabriel Bruno, Yamila B and Christian González, PET / CT technicians: Lucio De Blumenkrantz Innocentiis and Soledad González, and to all the members of the radiopharmacy and cyclotron area, specially Alicia Coronel and Adrian Durán.

REFERENCES
8. Carimas 2.0, © Turku PET Centre. http://www.turkupetcentre.net/carimasturku/